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Minimum energy dissipation river networks with fractal boundaries
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The effects of the entire drainage area boundary on the drainage basins and their size distributions
have been studied using the minimum energy dissipation model for river networks. A simple scaling re-
lationship 7=1++D /2 between the values of the exponents 7 in the power law basin size distibutions and
the fractal dimension D of the boundary of the entire drainage area has been established. The scaling re-
lationship has been tested using simulations, with external perimeters (D=$%) or hulls (D=17) of in-

vasion percolation clusters, as the boundaries for the entire drainage areas.

PACS number(s): 64.60.Ht, 92.40.Fb, 92.40.Cy, 02.60.Pn

Drainage networks that are embedded in a drainage
area subject to a uniform energy input from precipitation
have frequently been cited as familiar examples of a spa-
tially extended open system [1]. Precipitated water flows
downhill, through channel networks, and finally ends its
journey in an ocean or lake. During this process, the po-
tential energy associated with the precipitation is dissi-
pated. Drainage area landscapes are modified by erosion
caused by the flow, and self-organize into structures that
have often been described as self-similar fractals [2-6].
The whole drainage area is partitioned into a number of
drainage basins and their boundaries are found to be frac-
tal [7]. The distributions of a number of physical vari-
ables in river basins are multifractal [8]. These physical
variables include energy expenditure, slopes, and
discharge. It has also been argued that the evolution of
drainage networks displays multiscaling properties [9]
and spatial self-organized criticity [10-13].

A number of models for drainage networks have been
developed in order to understand these spatially extended
open systems. All these models can be approximately
separated into three classes according to their different
approaches. The models in the first class are based on
Shreve’s fundamental stochastic postulate of random to-
pology [14—17]. The second type is mainly based on op-
timization principles [18-21]. These models embody the
assumption that an open system with constant energy in-
jections tends to form a structure that minimizes the total
energy dissipation rate in the system [22,23]. Both the
first and the second types of models have focused on
reproducing the statistical properties of drainage net-
works while less emphasis has been placed on their evolu-
tion. Unlike the first two types of models, the third class
of models [6,24—27] is based on physical processes, such
as erosion and deposition, which alter the landscape of
the drainage area that dictates the configurations of river
networks.

Recently, models of the second type, described above,
have been studied extensively by Howard [21] and Rinal-
do et al. [28]. The model of Rinaldo et al. is based on
three principles of optimal energy expenditure proposed
by Rodriguez-Iturbe et al. [29]: (1) the principle of
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minimum energy expenditure in any link of the network,
(2) the principle of equal energy expenditure per unit area
of channel surface anywhere in the network, and (3) the
principle of minimum energy expenditure in the network
as a whole. Provided with the position of an outlet and
the outer basin boundary, the structure of the minimum
energy dissipation river network that drains the given
basin is obtained. The structural characteristics of the
minimum energy dissipation drainage network, such as
Horton’s law of stream lengths, the stream’s bifurcation
ratio, and the multifractal spectrum of the width func-
tion, are found to be similar to those measured for natu-
ral drainage networks [30]. The model of Rinaldo et al.
has been extended to the case in which the drainage area
can be covered by a number of river basins [31]. The
boundary of each basin is determined, in a natural way,
by the competition (minimizing the energy dissipation
rate in the network) and cooperation (covering of the
whole drainage area) between the basins that share com-
mon boundaries. It had been found that the distribution
of drainage basin areas obtained from this model is a
power law. The boundary of each drainage basin is also a
fractal with a fractal dimension of about 1.10 and the
structure of the minimum energy dissipation river net-
works are self-similar in terms of the scaling relationship
between the internal link length distribution and the net-
work resolution. These results are also similar to the field
data obtained from studies of natural drainage basins
[31].

A minimum energy dissipation model [32], based on
that of Howard [20] and Rinaldo et al. [28], is based
directly on the minimum energy dissipation principle and
an empirical relationship [33] s ~ Q% between the slope s
of each link in a channel network and the mean annual
discharge Q that flows through it. Field observations in-
dicate that the velocity of water flow is almost constant
everywhere in a channel network [34]. The constant ve-
locity of water flow and the small magnitude of the veloc-
ity everywhere means that the contribution of changes in
kinetic energy to the energy dissipation in the stream is
negligible. If P; denotes the energy dissipation in link i of
length L;, Q; is the mean discharge in link i, and s; is the
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slope in that link, then the energy dissipation in the link
can be written as

P;=0Q;L;s;
— Qil + aLi . (1 )
Here the relationship
s;~ Q7 2)

has been applied. Thus the total energy dissipation in the
whole drainage network can be expressed as

PZZPizzQiHaLi ) (3)

where the index i sums over all the links. The landscape
is associated with the drainage network by

hi=3s;L;=3 Q7L . 4
J J

Here h; is the elevation of site i on the landscape and
the index j labels all of the links connecting site i to the
outlet on the boundary of A4, where the height is O (sea
level). The flow Q; is calculated as

Qizsz+1> (5)
j

where it is assumed that precipitation falls uniformly on
the whole the area 4 and there are no losses due to eva-
poration, subsurface flow, etc. The summation is over all
the tributaries j of i that have flows of Q; into site i. The
addition of a unit flow to 3 ;Q; represents the precipita-
tion onto the ith site.

The value of «a is given by Leopold and Maddock [33]
as —0.49. However, a large range of values has been ob-
tained for the exponent a from field observations
[34—37]. The value of a can also be derived theoretically,
based on the three optimal energy expenditure principles
for channel networks [29]. This theoretical value is
—0.5. So when a value of —0.5 is used for a, this model
is identical to that of Rinaldo et al.

The model was studied [32] using six different values
for the exponent a (a=—0.75, —0.625, —0.5, —0.325,
—0.25, and —0.125). The surfaces of these minimum en-
ergy dissipation drainage basins were constructed and
found to be more complex than simple self-affine fractals.
The drainage basins of these optimal drainage networks
have power law size (area) distribution N(A4)~ A4 ~ 7 with
a universal exponent 7=2 which is independent of the
value of a. For the minimum energy dissipation drainage
networks, obtained using a particular value for «, the
basins shape are similar to each other.

To a significant degree, all three types of models, dis-
cussed above, have reproduced the geometrical and topo-
logical proprieties that characterize natural drainage
basins, especially their scaling (fractal) properties
[6,17,29-32]. In minimum energy dissipation models
[29-32], the structure of drainage networks and their as-
sociated landscapes, which recreate many scaling proper-
ties that are also found in nature, were obtained as the
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coproducts of the minimum energy dissipation principle
and space filling. The space is defined by the outer
boundary of the drainage area. In all the previous stud-
ies, the lattice boundary (a square) was used as the bound-
ary for the whole drainage area. Few studies have ad-
dressed the roll of this boundary in the organization of
the river basins.

Here, a more realistic, fractal boundary has been used
for the entire system in the model. The implementation
of the model and the optimization method have been de-
scribed earlier [32].

Two types of fractal boundaries were used for the en-
tire drainage area. They are the external perimeters and
the hulls of invasion percolation clusters [38—-42]. Figure
1(a) shows the area enclosed by the external perimeter of
an invasion percolation cluster, generated on a square lat-
tice. The entire area enclosed by these fractal boundaries
(including both invaded and trapped regions) is used as
the area A4 in the simulations. The maximum extent of
the invasion percolation cluster is 256 lattice units so that
the whole cluster can be embedded in a 256X256 tri-
angular lattice. When the hull of an invasion percolation
cluster is used for the boundary of the entire drainage
area, those unoccupied areas, which can be connected
from outside the region occupied by the cluster through a
path consisting of steps between either unoccupied
nearest neighbors or unoccupied next nearest neighbors,
were excluded [42]. It has been shown [40-45] that the
fractal dimensions for the external perimeter and the hull
of a percolation cluster, or a cluster obtained by invasion
percolation growth without trapping rules, are exactly
and 7. The fractal dimension of the external perimeter of
an invasion percolation cluster is not affected by trapping
rules. However, it can be shown that the fractal dimen-
sion of an invasion percolation cluster grown with trap-
ping rules differs from the value of 7 [46,47]. Figure 1(b)
shows an example of a drainage area using the hull of an
invasion percolation cluster grown without trapping rules
as its boundary. Its maximum extent was 512 lattice
units.

Different values of the exponent a and the sizes of the
invasion percolation clusters were tested in the simula-
tions. The resulting structures of the individual
minimum energy dissipation drainage networks, were all
found to be similar to those obtained from the simula-
tions using square boundaries, with corresponding values
for the exponent a. Figure 2 shows an example of a
minimum energy dissipation drainage network, obtained
using the external perimeters of an invasion percolation
cluster with maximum extension of 256, and a value of
—0.5 for the exponent a.

It can be seen from the figures that the whole drainage
area is drained by a distribution of river networks of
different sizes. This partition of the drainage area, to-
gether with the structures within each river network,
minimizes the total energy dissipation rate in the whole
system. Figures 3(a) and 3(b) show the boundaries be-
tween the river basins in two drainage areas with the
external perimeter and the hull of an invasion percolation
cluster as their boundaries, respectively. These boun-
daries define each individual drainage basin inside the en-
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tire drainage area. Within each drainage basin, all the
water will sooner or later reach the same outlet and flow
out of the entire area into the “ocean.”

The cumulative size distributions of the drainage
basins for different values of a and using different fractal
boundaries are shown in Figs. 4(a) and 4(b). All the data
sets used in the Fig. 4(a) were obtained using external
perimeters of invasion percolation clusters as their entire
drainage areas boundaries. The data sets shown in Fig.
4(b) were obtained from simulations carried out using in-
vasion percolation cluster hulls as boundaries for the en-

tire drainage areas. In Fig. 4(a), the data sets represented
by the square symbols correspond to the drainage areas
with maximum extensions L of 512 lattice units, while for
the other data sets L =256 lattice units. The values of
the exponent a used in the simulations were —O0.75,
—0.5, and —0.25 corresponding to the data sets
represented by the diamond, circle or square, and triangle
symbols, respectively. In Fig. 4(b), the maximum extent
of the drainage area was 512 lattice units, and the value
of the exponent a was —0.5, for all the data sets shown
in the figure.

FIG. 1. Examples of two drainage areas
used in the simulations. In Fig. 1(a), the
boundary of the drainage area is the external
perimeter of the invasion percolation cluster.
The black sites are invaded sites and the gray
sites are trapped sites. The maximum exten-
sion (L =X, —Xmin) is 256 lattice units. In
Fig. 1(b), the boundary of the drainage area is
the hull of an invasion percolation cluster.
Those trapped areas in the cluster that can be
connected to the outside through a path con-
sisting of steps between unoccupied nearest
neighbors or unoccupied next nearest neigh-
bors are not included in the drainage area.
Trapped regions that cannot be reached in this
manner are shown in gray. The cluster ex-
tends over a length of 512 lattice units. In
both parts of the figure, the entire drainage
areas used in the simulations are indicated by
the black sites and gray sites.
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All the data sets in Figs. 4(a) and 4(b) can be fitted
quite well by straight lines over more than a decade of
basin areas. This means that the minimum energy dissi-
pation drainage basins in the drainage area with a fractal
boundary have a power law cumulative size distribution
N(A> A*)~ A*'"7, where the value of 1 —7 is given by
the slope of these fitted lines. In other words, the basin
area distribution is N(A)~ A~ 7, where N(A)5A is the
number of basins with areas in the range 4 —64 /2 to
A +8A4 /2. The slopes of the fitting straight lines shown
in Figs. 4(a) and 4(b) are close to each other. This indi-
cates that the values of the exponent 7 are close to each
other when the data sets are obtained from simulations
using boundaries with the same fractal dimension, in-
dependent of the values of the exponent a used in the
simulation.

A power law distribution of basin area was also found
in previous studies in which a square was used as the
boundary for the whole drainage area [32]. However,
with square boundaries, a value of —1.50 was found for
the size distribution exponent 7. This indicates that the
value of 7 depends on the fractal dimension of the bound-
ary. The relationship between 7 and D can be explained
by a scaling argument similar to that used by Meakin,
Feder, and Jgssang [17] to explain the power law basin
area distribution found using simple statistical models for
river networks.

Assuming that the basin area distribution is given by

N(A)~A"T, (6)
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then the total area A occupied by basins of area 4 < 4 *
is given by

*
A~ [" 447"d4
—ra*
~[4277¢
~A*2_T. (7)

It has been shown that the basins obtained from the
drainage area with particular values of a are similar to
each other [32] (their aspect ratio is =1 and does not in-
crease with increasing basin area). This implies that for
each basin, the basin area scales as

A*~I*2, (8)

where [* is the length of the basin. Substituting Eq. (8)
into Eq. (7), it can be seen that

‘)QNI*Z(Z—T) . 9)

The area within distance /* from a D dimensional
boundary can approximately by the sum of the areas of
the maximum number of boxes with side length /* that
are needed to cover the entire boundary. Thus

A ~1*¥*P=]*2-D (10)
Comparing Egs. (9) and (10), it can be seen that
T=1+D/2. (11)

If a square is used as the whole drainage area, the di-

FIG. 2. River networks generated from the
minimum energy dissipation model using frac-
tal boundaries. The boundary of the entire
drainage area used in the simulation was ob-
tained from the external perimeter of the in-
vasion percolation cluster shown in Fig. 1(a).
A value of —0.50 was used for the exponents
a in the simulation. The thickness of the links
(segments in the figure) is plotted proportional
to the square root of the flow in that link. The
arrows indicate the flow directions in the net-
works.
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FIG. 3. The boundaries of the minimum en-
ergy dissipation drainage basins. The boun-
daries of the entire drainage area used to gen-
erate Figs. 3(a) and 3(b) are shown in Fig. 1(a)
and 1(b), respectively. A value of —0.5 was
used for the exponent « in both the simula-
tions.
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FIG. 4. The dependence of N( 4 > 4*), the number of the basins that have areas larger than A *, on the area 4 * for different
values of a and the two different types of drainage area boundaries. In Fig. 4(a), all the data sets were obtained by using fractal boun-
daries obtained from invasion percolation cluster external perimeters. Results obtained from simulations carried out with a= —0.25,
—0.5, and —0.75 are indicated by triangular, square or circular, and diamond shaped symbols, respectively. The maximum extent L
of the entire drainage area was 512 lattice units corresponding to the square symbols, while all the other simulations were carried out
with L =256 lattice units. In Fig. 4(b), the hulls of invasion percolation clusters were used as boundaries. In these simulations
a=—0.5and L =512. In both parts of the figure, the data sets are fitted by straight lines using a “least-squares-fitting” method. The
slopes of these lines are indicated. The data points belonging to the same data set are connected by dotted lines to guide the eye.

mension of the boundary D is 1. According to Eq. (11),
the value of 7is 2. This is the result that was obtained in
the earlier studies. For the simulations with invasion per-
colation cluster external perimeter boundaries with a
fractal dimension D =%, a value of 7= is expected from
the scaling exponent relationship between 7 and D in Eq.
(11). The values of 7 obtained from the simulations are
1.66, 1.69, 1.70, 1.75, 1.67, 1.70, 1.72, 1.81, 1.70, 1.69,
1.74, 1.72, and 1.74, with a mean value of 1.71. All of
these values are close to the theoretical value of 1.67.
When the entire drainage area boundaries were obtained
from the hull of invasion percolation clusters with a frac-
tal dimension of 7, a value of the 7= £ =1.875 is expect-
ed. The values of 7, obtained from the data sets shown in
Fig. 4(b), are 1.94, 1.92, 1.93, 1.93, 1.94, 1.94, and 1.91,
with a mean value of 1.93. These values are also close to
the theoretical value of 1.875. This suggests that the
minimum energy dissipation drainage basins have a
power law basin area distribution N(A4)~ A4 ™7, with a
value of 1+ D /2 for the exponent 7, where D is the frac-
tal dimension of the boundary of the entire drainage area
that encloses all the drainage basins. For drainage areas
with boundaries that have the same fractal dimensions,
the number of basins with size A4 in the drainage area ap-

pears to decay algebraically with the same universal ex-
ponent for different values of a.

The other quantities that characterize drainage basins,
such as the fractal dimension of individual basin perime-
ters, the fractal dimension of main streams, the roughness
of the resulting landscape and the fractal dimension of its
contours, etc., have also been investigated. These quanti-
ties were found to be independent of the fractal dimen-
sion of the entire drainage basin boundary.

In this paper, the minimum energy dissipation model
for river networks has been used to investigate the effects
of the entire drainage area boundaries on a number of
quantities that characterize drainage basins. Although
the studies are restricted to the minimum energy dissipa-
tion model, the results may be relevant to the other river
network models in which the basin area A4 is proportional
to the square of its length . If basins of different sizes are
related by a more general affine transformation
(A~1""1 ), then the size distribution exponent 7 is given
by 7=2—v(2—D).

We would like to thank G. Wagner for providing his
programs to generate the invasion percolation clusters
used in the paper.
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FIG. 1. Examples of two drainage areas
used in the simulations. In Fig. l(a), the
boundary of the drainage area is the external
perimeter of the invasion percolation cluster.
The black sites are invaded sites and the gray
sites are trapped sites. The maximum exten-
sion (L =X, — X)) 18 256 lattice units. In
Fig. 1(b), the boundary of the drainage area is
the hull of an invasion percolation cluster.
Those trapped areas in the cluster that can be
connected to the outside through a path con-
sisting of steps between unoccupied nearest
neighbors or unoccupied next nearest neigh-
bors are not included in the drainage area.
Trapped regions that cannot be reached in this
manner are shown in gray. The cluster ex-
tends over a length of 512 lattice units. In
both parts of the figure, the entire drainage
areas used in the simulations are indicated by
the black sites and gray sites.



